Quasisep
Quasisep#
- class tinygp.kernels.quasisep.Quasisep[source]#
Bases:
tinygp.kernels.base.Kernel
The base class for all quasiseparable kernels
Instead of directly implementing the
p
,q
, anda
elements of thetinygp.solvers.quasisep.core.StrictLowerQSM
, this class implementsh
,Pinf
, andA
, where:q = h
,p = h.T @ Pinf @ A
, anda = A
.
This notation follows the notation from state space models for stochastic differential equations, and so far it seems like a good way to specify these models, but these details are subject to change in future versions of
tinygp
.- coord_to_sortable(X: tinygp.helpers.JAXArray) tinygp.helpers.JAXArray [source]#
A helper function used to convert coordinates to sortable 1-D values
By default, this is the identity, but in cases where
X
is structured (e.g. multivariate inputs), this can be used to appropriately unwrap that structure.
- evaluate(X1: tinygp.helpers.JAXArray, X2: tinygp.helpers.JAXArray) tinygp.helpers.JAXArray [source]#
The kernel evaluated via the quasiseparable representation
- evaluate_diag(X: tinygp.helpers.JAXArray) tinygp.helpers.JAXArray [source]#
For quasiseparable kernels, the variance is simple to compute
- abstract observation_model(X: tinygp.helpers.JAXArray) tinygp.helpers.JAXArray [source]#
The observation model for the process
- abstract stationary_covariance() tinygp.helpers.JAXArray [source]#
The stationary covariance of the process
- to_general_qsm(X1: tinygp.helpers.JAXArray, X2: tinygp.helpers.JAXArray) tinygp.solvers.quasisep.general.GeneralQSM [source]#
The generalized quasiseparable representation of this kernel
- to_symm_qsm(X: tinygp.helpers.JAXArray) tinygp.solvers.quasisep.core.SymmQSM [source]#
The symmetric quasiseparable representation of this kernel