Exp#
- class tinygp.kernels.quasisep.Exp(scale: tinygp.helpers.JAXArray, sigma: tinygp.helpers.JAXArray = <factory>)[source]#
Bases:
Quasisep
A scalable implementation of
tinygp.kernels.stationary.Exp
This kernel takes the form:
\[k(\tau)=\sigma^2\,\exp\left(-\frac{\tau}{\ell}\right)\]for \(\tau = |x_i - x_j|\).
- Parameters:
scale – The parameter \(\ell\).
sigma – The parameter \(\sigma\).
- coord_to_sortable(X: tinygp.helpers.JAXArray) tinygp.helpers.JAXArray #
A helper function used to convert coordinates to sortable 1-D values
By default, this is the identity, but in cases where
X
is structured (e.g. multivariate inputs), this can be used to appropriately unwrap that structure.
- evaluate(X1: tinygp.helpers.JAXArray, X2: tinygp.helpers.JAXArray) tinygp.helpers.JAXArray #
The kernel evaluated via the quasiseparable representation
- evaluate_diag(X: tinygp.helpers.JAXArray) tinygp.helpers.JAXArray #
For quasiseparable kernels, the variance is simple to compute
- observation_model(X: tinygp.helpers.JAXArray) tinygp.helpers.JAXArray [source]#
The observation model for the process
- to_general_qsm(X1: tinygp.helpers.JAXArray, X2: tinygp.helpers.JAXArray) GeneralQSM #
The generalized quasiseparable representation of this kernel