Scale#
- class tinygp.kernels.quasisep.Scale(kernel: Quasisep, scale: JAXArray | float)[source]#
Bases:
Wrapper
The product of a scalar and a quasiseparable kernel
- coord_to_sortable(X: tinygp.helpers.JAXArray) tinygp.helpers.JAXArray #
A helper function used to convert coordinates to sortable 1-D values
By default, this is the identity, but in cases where
X
is structured (e.g. multivariate inputs), this can be used to appropriately unwrap that structure.
- design_matrix() tinygp.helpers.JAXArray #
The design matrix for the process
- evaluate(X1: tinygp.helpers.JAXArray, X2: tinygp.helpers.JAXArray) tinygp.helpers.JAXArray #
The kernel evaluated via the quasiseparable representation
- evaluate_diag(X: tinygp.helpers.JAXArray) tinygp.helpers.JAXArray #
For quasiseparable kernels, the variance is simple to compute
- observation_model(X: tinygp.helpers.JAXArray) tinygp.helpers.JAXArray #
The observation model for the process
- to_general_qsm(X1: tinygp.helpers.JAXArray, X2: tinygp.helpers.JAXArray) GeneralQSM #
The generalized quasiseparable representation of this kernel
- to_symm_qsm(X: tinygp.helpers.JAXArray) SymmQSM #
The symmetric quasiseparable representation of this kernel
- transition_matrix(X1: tinygp.helpers.JAXArray, X2: tinygp.helpers.JAXArray) tinygp.helpers.JAXArray #
The transition matrix between two coordinates